Simplified nonlinear dynamic models for $R C$ structures under blast and impact loading

Flavio Stochino

Dipartimento di Ingegneria Civile，Ambientale e Architettura， Università degli studi di Cagliari

Motivation

Complexity of blast load scenario

Complexity of advanced numerical models

Needs of simplified models

(b)

Outline

- Main Aim of the Lecture: Simplified models for the flexural bebaviour of R.C. beams subjected to explosion (and impulsive) verified with experimental results. In all models, account is taken of the effects of strain-rate.
- Section 1: Dynamic Models
- Section 2: Energy Model
- Section 3: Sensitivity Analysis
- Section 4: Tower Building Case

Outline

- Main Aim of the Lecture: Simplified models for the flexural behaviour of R.C. beams subjected to explosion (and impulsive) verified with experimental results. In all models, account is taken of the effects of strain-rate.
- Section 1: Dynamic Models
- Section 2: Energy Model
- Section 3: Sensitivity Analysis
- Section 4: Tower Building Case

Introduction - Section 1

Section 1: Dynamics Models

- Continuos Beam Model

- SDOF Model

(b)
- FEM

Dynamic model 1: continuous beam

- Euler-Bernulli beam model

$$
\frac{\partial^{2} M}{\partial x^{2}}+q=\mu \frac{\partial^{2} v}{\partial t^{2}}
$$

- Plane sections remain plane and perpendicular to the beam axis after deformation
- No shear deformation

Dynamic model 1: continuous beam

Material stress-strain relationships
Model Code. "First complete draft." Bulletin 55 (2010).

$$
\sigma_{\mathrm{c}}=f_{\mathrm{cm}} \frac{k \cdot \varepsilon_{\mathrm{c}} / \varepsilon_{\mathrm{cl}}-\left(\varepsilon_{\mathrm{c}} / \varepsilon_{\mathrm{c}}\right)^{2}}{1+(k-2) \cdot \varepsilon_{\mathrm{c}} / \varepsilon_{\mathrm{cl}}} \quad \text { for }\left|\varepsilon_{\mathrm{c}}\right|<\left|\varepsilon_{\mathrm{c}, \text { lim }}\right| \quad f_{s}=E_{s} \cdot \varepsilon_{s}, \quad f_{s}=f_{y}
$$

Dynamic model 1: continuous beam

- Bending moment- curvature law

Bilinear

$$
M=\bar{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \theta\right)=-\bar{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \frac{\partial^{2} v}{\partial x^{2}}\right)
$$

Dynamic model 1: continuous beam

- Bending moment- curvature law

Bilinear

Dynamic model 1: continuous beam

- Equation of motion:

$$
\frac{\partial^{2} M}{\partial x^{2}}+q=\mu \frac{\partial^{2} v}{\partial t^{2}}
$$

$$
M=\bar{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \theta\right)=-\bar{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \frac{\partial^{2} v}{\partial x^{2}}\right)
$$

$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

Dynamic model 1: continuous beam

- Equation of motion:

$$
\frac{\partial^{2} M}{\partial x^{2}}+q=\mu \frac{\partial^{2} v}{\partial t^{2}}
$$

$$
M=\bar{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \theta\right)=-\bar{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \frac{\partial^{2} v}{\partial x^{2}}\right)
$$

Dynamic model 1: continuous beam

Simplified hypothesis: 1
Since the time when the impulsive load is applied is generally much smaller than the oscillation period of the beam, the failure of the beam usually occurs before the first peak of oscillation. We'll assume monotone constitutive laws.

Dynamic model 1: continuous beam

Simplified hypothesis: 2

Flexural Failure

Dynamic model 1: continuous beam

b

Yielding limit characteristics $\mathbf{M}, \mathbf{x}, \boldsymbol{\theta}$

$$
\begin{aligned}
& b \int_{0}^{x_{\mathrm{y}}} \sigma_{\mathrm{c}} \mathrm{~d} y+\sigma_{\mathrm{ss}} A_{\mathrm{ss}}=f_{\mathrm{yk}} A_{\mathrm{s}} \quad \quad b f_{\mathrm{cm}} \int_{0}^{x_{\mathrm{y}}}\left[\frac{k \frac{\varepsilon_{\mathrm{sy}}}{\varepsilon_{\mathrm{c} 1}} \frac{x_{\mathrm{y}}-y}{d-x_{\mathrm{y}}}-\left(\frac{\varepsilon_{\mathrm{sy}}}{\varepsilon_{\mathrm{cl} 1}} \frac{x_{\mathrm{y}}-y}{d-x_{\mathrm{y}}}\right)^{2}}{1+(k-2) \frac{\varepsilon_{\mathrm{sy}}}{\varepsilon_{\mathrm{c} 1}} \frac{x_{\mathrm{y}}-y}{d-x_{\mathrm{y}}}}\right] \mathrm{d} y+E_{\mathrm{s}} \varepsilon_{\mathrm{sy}} \frac{x_{\mathrm{y}}-d^{\prime}}{d-x_{\mathrm{y}}} A_{\mathrm{ss}}=f_{\mathrm{yk}} A_{\mathrm{s}} \\
& \text { nal equilibrium: }
\end{aligned}
$$

Rotational equilibrium:

$$
M_{\mathrm{y}}=b \int_{0}^{x_{\mathrm{y}}} \sigma_{\mathrm{c}}(d-y) \mathrm{d} y+\sigma_{\mathrm{ss}} A_{\mathrm{ss}}\left(d-d^{\prime}\right)=b f_{\mathrm{cm}} \int_{0}^{x_{\mathrm{y}}}\left[\frac{k \frac{\varepsilon_{\mathrm{sy}}}{\varepsilon_{\mathrm{c} 1}} \frac{x_{\mathrm{y}}-y}{d-x_{\mathrm{y}}}-\left(\frac{\varepsilon_{\mathrm{sy}}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{y}}-y}{d-x_{\mathrm{y}}}\right)^{2}}{1+(k-2) \frac{\varepsilon_{\mathrm{sy}}}{\varepsilon_{\mathrm{cl} 1}} \frac{x_{\mathrm{y}}-y}{d-x_{\mathrm{y}}}}\right](d-y) \mathrm{d} y+E_{\mathrm{s}} \varepsilon_{\mathrm{sy}} \frac{x_{\mathrm{y}}-d^{\prime}}{d-x_{\mathrm{y}}} A_{\mathrm{ss}}\left(d-d^{\prime}\right)
$$

Dynamic model 1: continuous beam

$\checkmark d^{\prime}$

$b f_{\mathrm{cm}} \int_{0}^{x_{\mathrm{s}}}\left[\frac{\frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}-\left(\frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}\right)^{2}}{1+(k-2) \frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}}\right] \mathrm{d} y+f_{\mathrm{yk}} A_{\mathrm{ss}}=f_{\mathrm{yk}} A_{\mathrm{s}} \quad$ se $\sigma_{\mathrm{ss}} \geq f_{\mathrm{yk}}$
$M_{\mathrm{u}}=b f_{\mathrm{cm}} \int_{0}^{x_{\mathrm{u}}}\left[\frac{k \frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}-\left(\frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}\right)^{2}}{1+(k-2) \frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}}\right](d-y) \mathrm{d} y+E_{\mathrm{s}} \varepsilon_{\mathrm{c}, \text { lim }} \frac{x_{\mathrm{u}}-d^{\prime}}{x_{\mathrm{u}}} A_{\mathrm{ss}}\left(d-d^{\prime}\right)$ se $\sigma_{\mathrm{ss}}<f_{\mathrm{yk}}$
$M_{\mathrm{u}}=b f_{\mathrm{cm}} \int_{0}^{x_{\mathrm{u}}}\left[\frac{k \frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl} 1}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}-\left(\frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{c} 1}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}\right)^{2}}{1+(k-2) \frac{\varepsilon_{\mathrm{c}, \text { lim }}}{\varepsilon_{\mathrm{cl}}} \frac{x_{\mathrm{u}}-y}{x_{\mathrm{u}}}}\right](d-y) \mathrm{d} y+f_{\mathrm{yk}} A_{\mathrm{ss}}\left(d-d^{\prime}\right) \quad$ se $\sigma_{\mathrm{ss}} \geq f_{\mathrm{yk}}$

Dynamic model 1: continuous beam

Collapse Criterium

Dynamic model 1: continuous beam

Given $\mathrm{M}_{\mathrm{u}}, \mathrm{M}_{\mathrm{y}}, \mathrm{x}_{\mathrm{u}}, \mathrm{x}_{\mathrm{y}}$ it is easy to calculate \bar{K} and \bar{M}.

$$
\frac{\bar{M}^{2}}{\bar{K}} \ln \left[\cosh \left(\frac{\bar{K}}{\bar{M}} \theta_{\mathrm{u}}\right)\right]=\frac{\mathcal{E}_{\mathrm{y}}}{d-x_{\mathrm{y}}} \quad \theta_{\mathrm{u}}=\frac{\mathcal{E}_{\mathrm{c}, \mathrm{lim}}}{x_{\mathrm{u}}}
$$

Dynamic model 1: continuous beam

- Strain Rate Effect CEB Bulletin 187 §3.4.2- §3.31

$$
\begin{aligned}
& f_{\mathrm{cm}, \mathrm{dyn}}=f_{\mathrm{cm}} \cdot\left(\frac{\dot{\varepsilon}_{\mathrm{c}}}{30 \cdot 10^{-6}}\right)^{1.026 \cdot \alpha} \text { if } \dot{\varepsilon}_{\mathrm{c}} \leq 30 \mathrm{~s}^{-1} \\
& f_{\mathrm{cm}, \mathrm{dyn}}=f_{\mathrm{cm}} \cdot \gamma \cdot\left(\dot{\varepsilon}_{\mathrm{c}}\right)^{1 / 3} \text { if } \dot{\varepsilon}_{\mathrm{c}}>30 \mathrm{~s}^{-1} \\
& \varepsilon_{\mathrm{cl}, \mathrm{dyn}}=\varepsilon_{\mathrm{c} 1} \cdot\left(\frac{\dot{\varepsilon}_{\mathrm{c}}}{30 \cdot 10^{-6}}\right)^{0.02} \\
& \varepsilon_{\mathrm{c}, \mathrm{lim}, \mathrm{dyn}}=\varepsilon_{\mathrm{c}, \mathrm{lim}} \cdot\left(\frac{\dot{\varepsilon}_{\mathrm{c}}}{30 \cdot 10^{-6}}\right)^{0.02} \\
& f_{\mathrm{yk}, \mathrm{dyn}}=f_{\mathrm{yk}} \cdot\left[1+\frac{6}{f_{\mathrm{yk}}} \ln \left(\frac{\dot{\varepsilon}^{\mathrm{s}}}{5 \cdot 10^{-5}}\right)\right] \quad \text { if } \dot{\varepsilon}^{\mathrm{s}} \leq 10 \mathrm{~s}^{-1}
\end{aligned}
$$

Dynamic model 1: continuous beam

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be obtained by means of a numerical approach. An iterative procedure is performed, which consists in evaluating at each time step the following quantities:
$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

1. the vertical displacement v , which is obtained by solving the equation of motion where \bar{K} and \bar{M} are varied at each time step due to strain rate effects;

Dynamic model 1: continuous beam

Numerical discretization:

$$
\begin{aligned}
& \bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \bar{K}(t), \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t) \\
& \frac{\partial^{2} v(x, t)}{\partial x^{2}}=\frac{v_{(i-1, j)}-2 v_{(i, j)}+v_{(i+1, j)}}{h^{2}} \\
& \frac{\partial^{3} v(x, t)}{\partial x^{3}}=\frac{-v_{(i-2, j)}+2 v_{(i-1, j)}-2 v_{(i+1, j)}+v_{(i+2, j)}}{2 h^{3}} \\
& \frac{\partial^{4} v(x, t)}{\partial x^{4}}=\frac{-v_{(i-2, j)}-4 v_{(i-1, j)}+6 v_{(i, j)}-4 v_{(i+1, j)}+v_{(i+2, j)}}{h^{4}} \quad 2^{\text {nd }} \text { order Finite } \\
& \frac{\partial^{2} v(x, t)}{\partial t^{2}}=\frac{v_{(i, j-1)}-2 v_{(i, j)}+v_{(i, j+1)}}{k^{2}}
\end{aligned}
$$

Dynamic model 1: continuous beam

$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$
Numerical Integration Scheme:

$$
\begin{aligned}
& K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{v_{(i-1, j)}-2 v_{(i, j)}+v_{(i+1, j)}}{h^{2}}\right)\left[\begin{array}{l}
-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{v_{(i-1, j)}-2 v_{(i, j)}+v_{(i+1, j)}}{h^{2}}\right) \times\left(\begin{array}{l}
\left.-\frac{-v_{(i-2, j)}+2 v_{(i-1, j)}-2 v_{(i+1, j)}+v_{(i+2, j)}}{h^{3}}\right)^{2} \\
+\frac{v_{(i-2, j)}-4 v_{(i-1, j)}+6 v_{(i, j)}-4 v_{(i+1, j)}+v_{(i+2, j)}}{h^{4}}
\end{array}\right]+ \\
+\mu \frac{v_{(i, j-1)}-2 v_{(i, j)}+v_{(i, j+1)}}{k^{2}}=q(i, j)
\end{array}\right]+
\end{aligned}
$$

Dynamic model 1: continuous beam

$$
K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{v_{(i-1, j)}-2 v_{(i, j)}+v_{(i+1, j)}}{h^{2}}\right)\left[\begin{array}{l}
-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{v_{(i-1, j)}-2 v_{(i, j)}+v_{(i+1, j)}}{h^{2}}\right) \times \\
\times\left(\frac{-v_{(i-2, j)}+2 v_{(i-1, j)}-2 v_{(i+1, j)}+v_{(i+2, j)}}{h^{3}}\right)^{2}+ \\
+\frac{v_{(i-2, j)}-4 v_{(i-1, j)}+6 v_{(i, j)}-4 v_{(i+1, j)}+v_{(i+2, j)}}{h^{4}}
\end{array}\right]+
$$

$$
+\mu \frac{\left.v_{(i, j-1)}-2 v_{(i, j)}+v_{(i, j+1)}\right)}{\uparrow k^{2}}=q(i, j) \quad \text { Numerical Integration Scheme: }
$$

Start time

Dynamic model 1: continuous beam

$$
K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)\left[\begin{array}{l}
-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\
\times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\
+\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}}
\end{array}\right]+
$$

$+\mu \frac{u_{(i, j-1)}-2 u_{(i, j)}-u_{(i, j+1)}}{k^{2}}=q(i, j) \quad$ Numerical Integration Scheme:
Time (j) \uparrow

Start time

Dynamic model 1: continuous beam

$$
\forall v(x, t)
$$

Dynamic model 1: continuous beam

$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)\left[\begin{array}{l}-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{\left.-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}\right)^{2}+}{h^{3}}+\right. \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}}\end{array}\right]+$

Dynamic model 1: continuous beam

$$
K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)\left[\begin{array}{l}
-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\
\times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\
+\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}}
\end{array}\right]+
$$

$+\mu \frac{u_{(i, j-1)}-2 u_{(i, j)}-u_{(i, j+1)}}{k^{2}}=q(i, j) \quad$ Numerical Integration Scheme:

Dynamic model 1: continuous beam

$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)\left[\begin{array}{l}-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{\left.-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}\right)^{2}+}{h^{3}}+\right. \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}}\end{array}\right]+$

Dynamic model 1: continuous beam

	$\left[\begin{array}{l} -2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}} \end{array}\right.$
$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)$	

Kime (j)
Boundary
Conditions

Dynamic model 1: continuous beam

$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)\left[\begin{array}{l}-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{\left.-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}\right)^{2}+}{h^{3}}+\right. \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}}\end{array}\right]+$

Dynamic model 1: continuous beam

	$\left\{\begin{array}{l} -2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{} \end{array}\right.$
$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)$	
	h^{4}

Kinematic
Boundary
Conditions

Dynamic model 1: continuous beam

	$\left[\begin{array}{l} -2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}} \end{array}\right.$
$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)$	

Dynamic model 1: continuous beam

	$\left[\begin{array}{l} -2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}} \end{array}\right.$
$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)$	

Kinematic
Boundary
Conditions

Dynamic model 1: continuous beam

	$\left[\begin{array}{l} -2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}} \end{array}\right.$
$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)$	

Kime (j)
Boundary
Conditions

Dynamic model 1: continuous beam

	$\left[\begin{array}{l} -2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}} \end{array}\right.$
$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)$	

Kime (j)
Boundary
Conditions

Dynamic model 1: continuous beam

	$\left[\begin{array}{l} -2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \times \\ \times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2}+ \\ +\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}} \end{array}\right.$
$K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)$	

Kime (j)
Boundary
Conditions

Dynamic model 1: continuous beam

$$
v(x, t)
$$

Numerical Integration Scheme:

Dynamic model 1: continuous beam

$$
K_{(j)} \operatorname{sech}^{2}\left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right)\left(\begin{array}{l}
-2 \frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \tanh \left(\frac{\bar{K}_{(j)}}{\bar{M}_{(j)}} \frac{u_{(i-1, j)}-2 u_{(i, j)}+u_{(i+1, j)}}{h^{2}}\right) \\
\times\left(\frac{-u_{(i-2, j)}+2 u_{(i-1, j)}-2 u_{(i+1, j)}+u_{(i+2, j)}}{h^{3}}\right)^{2} \\
+\frac{u_{(i-2, j)}-4 u_{(i-1, j)}+6 u_{(i, j)}-4 u_{(i+1, j)}+u_{(i+2, j)}}{h^{4}}
\end{array}\right]+
$$

$+\mu \frac{u_{(i, j-1)}-2 u_{(i, j)}-u_{(i, j+1)}}{k^{2}}=q(i, j) \quad$ Numerical Integration Scheme:

Dynamic model 1: continuous beam

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be obtained by means of a numerical approach. An iterative procedure is performed, which consists in evaluating at each time step the following quantities:
$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

1. the vertical displacement v , which is obtained by solving the equation of motion where \bar{K} and \bar{M} are varied at each time step due to strain rate effects;
2. the curvature $\theta=-\partial^{2} v / \partial x^{2}$ and the rate of curvature $\partial \theta / \partial t$,

Dynamic model 1: continuous beam

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be obtained by means of a numerical approach. An iterative procedure is performed, which consists in evaluating at each time step the following quantities:
$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

1. the vertical displacement v , which is obtained by solving the equation of motion where \bar{K} and \bar{M} are varied at each time step due to strain rate effects;
2. the curvature $\theta=-\partial^{2} v / \partial x^{2}$ and the rate of curvature $\partial \theta / \partial t$,
3. the bending moment M corresponding to the curvature θ;

Dynamic model 1: continuous beam

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be obtained by means of a numerical approach. An iterative procedure is performed, which consists in evaluating at each time step the following quantities:
$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

1. the vertical displacement v , which is obtained by solving the equation of motion where \bar{K} and \bar{M} are varied at each time step due to strain rate effects;
2. the curvature $\theta=-\partial^{2} v / \partial x^{2}$ and the rate of curvature $\partial \theta / \partial t$,
3. the bending moment M corresponding to the curvature θ;
4. the neutral axis depth from rotational equilibrium around the tensile reinforcement under the applied bending moment M;

Dynamic model 1: continuous beam

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be obtained by means of a numerical approach. An iterative procedure is performed, which consists in evaluating at each time step the following quantities:
$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

1. the vertical displacement v , which is obtained by solving the equation of motion where \bar{K} and \bar{M} are varied at each time step due to strain rate effects;
2. the curvature $\theta=-\partial^{2} v / \partial x^{2}$ and the rate of curvature $\partial \theta / \partial t$,
3. the bending moment M corresponding to the curvature θ;
4. the neutral axis depth from rotational equilibrium around the tensile reinforcement under the applied bending moment M;
5. the strains of concrete and steel reinforcements by using the linear deformation diagram and the value of curvature;

Dynamic model 1: continuous beam

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be obtained by means of a numerical approach. An iterative procedure is performed, which consists in evaluating at each time step the following quantities:
$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

1. the vertical displacement v , which is obtained by solving the equation of motion where \bar{K} and \bar{M} are varied at each time step due to strain rate effects;
2. the curvature $\theta=-\partial^{2} v / \partial x^{2}$ and the rate of curvature $\partial \theta / \partial t$,
3. the bending moment M corresponding to the curvature θ;
4. the neutral axis depth from rotational equilibrium around the tensile reinforcement under the applied bending moment M;
5. the strains of concrete and steel reinforcements by using the linear deformation diagram and the value of curvature;
6. the strain rates of concrete and steel reinforcements and the updated dynamic properties of materials;

Dynamic model 1: continuous beam

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be obtained by means of a numerical approach. An iterative procedure is performed, which consists in evaluating at each time step the following quantities:
$\bar{K}(t) \operatorname{sech}^{2}\left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left[-2 \frac{\bar{K}(t)}{\bar{M}(t)} \tanh \left(\frac{\bar{K}(t)}{\bar{M}(t)} \frac{\partial^{2} v(x, t)}{\partial x^{2}}\right)\left(\frac{\partial^{3} v(x, t)}{\partial x^{3}}\right)^{2}+\frac{\partial^{4} v(x, t)}{\partial x^{4}}\right]+\mu \frac{\partial^{2} v(x, t)}{\partial t^{2}}=q(x, t)$

1. the vertical displacement v , which is obtained by solving the equation of motion where \bar{K} and \bar{M} are varied at each time step due to strain rate effects;
2. the curvature $\theta=-\partial^{2} v / \partial x^{2}$ and the rate of curvature $\partial \theta / \partial t$,
3. the bending moment M corresponding to the curvature θ;
4. the neutral axis depth from rotational equilibrium around the tensile reinforcement under the applied bending moment M;
5. the strains of concrete and steel reinforcements by using the linear deformation diagram and the value of curvature;
6. the strain rates of concrete and steel reinforcements and the updated dynamic properties of materials;
7. the updated values of the mechanical characteristics $\left(M_{y}, M_{u}, x_{y}, x_{u}\right)$, by which the values of \bar{K} and \bar{M} are modified.
The loop is closed when the collapse criterion, which has been defined as the attainment of the maximum concrete strain (ultimate state), is satisfied.

SDOF Model

- Single Degree of Freedom Model
- Damping is disregarded, since successive cycles of loading are not considered. The first peak displacement is the more severe condition.

SDOF Model

SDOF Model

SDOF Model

SDOF Model

SDOF Model

Elastic Case

Plastic Case

$$
\begin{aligned}
& \theta_{\mathrm{E}}=\frac{48 \cdot v_{\mathrm{E}}}{5 \cdot l^{2}} \\
& \dot{\theta}_{\mathrm{E}}=\frac{48 \cdot \dot{v}_{\mathrm{E}}}{5 \cdot l^{2}} \\
& M=f(\theta) \\
& \dot{\theta}_{\mathrm{E}}=2 \cdot \frac{\dot{v}_{\mathrm{E}}}{l / 2} \cdot \frac{1}{l_{\mathrm{p}}} \\
& l_{\mathrm{p}} \\
& \theta_{\mathrm{E}}=\theta_{\mathrm{y}}+\frac{\varphi_{\mathrm{p}}}{l_{\mathrm{p}}}=\theta_{\mathrm{y}}+2 \cdot \frac{v_{\mathrm{E}}-v_{\mathrm{Ey}}}{l / 2} \cdot \frac{1}{l_{\mathrm{p}}} \\
& \varepsilon
\end{aligned}
$$

SDOF Model

Taking into account strain rate effect the equation of motion become a nonlinear differential equation with variable coefficients:

$$
\begin{gathered}
M_{\mathrm{E}, \mathrm{el}} \frac{\mathrm{~d}^{2} v_{\mathrm{E}}(t)}{\mathrm{d} t^{2}}+K_{\mathrm{E}, \mathrm{el}}(t) v_{\mathrm{E}}(t)=P_{\mathrm{E}}(t) \quad \text { for } 0 \leq v_{\mathrm{E}} \leq v_{\mathrm{Ey}} \\
M_{\mathrm{E}, \mathrm{pl}} \frac{\mathrm{~d}^{2} v_{\mathrm{E}}(t)}{\mathrm{d} t^{2}}+K_{\mathrm{E}, \mathrm{pl}}(t) v_{\mathrm{E}}(t)+\left(K_{\mathrm{E}, \mathrm{el}}(t)-K_{\mathrm{E}, \mathrm{pl}}(t)\right) v_{\mathrm{Ey}}=P_{\mathrm{E}}(t) \quad \text { for } v_{\mathrm{Ey}}<v_{\mathrm{E}} \leq v_{\mathrm{Eu}} \\
\\
\begin{array}{l}
P_{\mathrm{E}}(t)=q \cdot l \\
M_{\mathrm{E}, \mathrm{pl}}=0.66 \cdot M_{b} \\
M_{\mathrm{E}, \mathrm{el}}=0.78 \cdot M_{b}
\end{array}
\end{gathered}
$$

Biggs, John M., and John Melvin Biggs. Introduction to structural dynamics. McGraw-Hill College, 1964.

FEM

Finite element model by means of by the commercial software Midas Gen. In particular, the fiber model is used, which consists in dividing the cross-section of the beam into concrete fibers and steel rebars.

Case Study 1: Experimental Set Up

Magnusson J, Hallgren M. High performance concrete beams subjected to shock waves from air blast. Report n. FOA-R--00-01586-311--SE, Defence Research Establishment (FOA), Tumba, Sweden; 2000.

Case Study 1: Beam Characteristics

Beam label	B40_D5	B200/40_D3
Span length	1.5 m	1.5 m
Width of cross-section	0.300 m	0.293 m
Depth of cross-section	0.160 m	0.160 m
Cover	0.025 m	0.025 m
Tensile reinforcement	$5 \phi 16 \mathrm{~mm}$	$5 \phi 16 \mathrm{~mm}$
Compressive reinforcement	$2 \phi 10 \mathrm{~mm}$	$2 \phi 10 \mathrm{~mm}$
Concrete compressive strength		
Maximum concrete strain registered	43 MPa	$173 / 54 \mathrm{MPa}$ b
Steel yield strength	3.69%	$5.03 \% 0$
Steel elastic modulus	604 MPa	555 MPa
Mass per unit length	210 GPa	204 GPa

${ }^{\text {a }}$ Referring to the compressive strength of $\phi 150 \times 300 \mathrm{~mm}$ concrete cylinders.
${ }^{\mathrm{b}}$ The beam was made of two concrete layers: the first value refers to the concrete in the compressive zone, while the second is relative to the concrete in the tensile zone.
${ }^{c}$ This value has not been provided by the authors, so it has been assumed to be equal to $120 \mathrm{~kg} / \mathrm{m}$.

Case Study 1: Recorded Load

Experimental Recorded Load for beam B200/40_D3

Case Study 1: Beam After Load

Beam B40_D5

Beam B200/40_D3

Results - Case Study 1

B40_D5

Results - Case Study 1

B200/40_D3

Results - Case Study 1

Outline

- Main Aim of the Lecture: Simplified models for the structural bebaviour of R.C. beams subjected to explosion (and impulsive) verified with experimental results. In all models, account is taken of the effects of strain-rate.
- Section 1: Dynamic Models
- Section 2: Energy Model
- Section 3: Sensitivity Analysis
- Section 4: Tower Building Case

Energy Model

$W E(t)$

$$
\begin{gathered}
\int_{0}^{l} \int_{0}^{t} q(t) \cdot \frac{\partial v(x, t)}{\partial t} d t d x+\int_{0}^{t} \sum_{i=1}^{n} F_{i}(t) \frac{\partial v\left(x_{i}, t\right)}{\partial t} \mathrm{~d} t+\int_{0}^{t} \sum_{j=1}^{m} M_{j}(t) \frac{\partial}{\partial t}\left[\frac{\partial v}{\partial x}\left(x_{j}, t\right)\right] \mathrm{d} t= \\
=\int_{0}^{l} \frac{1}{2} \mu \cdot\left(\frac{\partial v(x, t)}{\partial t}\right)^{2} d x+\int_{0}^{l} \int_{0}^{l(x, t)} \bar{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \theta(x, t)\right) d \theta d x \\
K E(t) \\
\operatorname{SE}(t)
\end{gathered}
$$

Energy Model

$$
\begin{aligned}
& v(x, t)=V_{0}(t) \sin \left(\frac{\pi x}{l}\right) \\
& \qquad \int_{0}^{l} \int_{0}^{t} q(t) \cdot \frac{\partial v(x, t)}{\partial t} d t d x+\int_{0}^{t} \sum_{i=1}^{n} F_{i}(t) \frac{\partial v\left(x_{i}, t\right)}{\partial t} \mathrm{~d} t+\int_{0}^{t} \sum_{j=1}^{m} M_{j}(t) \frac{\partial}{\partial t}\left[\frac{\partial v}{\partial x}\left(x_{j}, t\right)\right] \mathrm{d} t= \\
& \quad=\int_{0}^{l} \frac{1}{2} \mu \cdot\left(\frac{\partial v(x, t)}{\partial t}\right)^{2} d x+\int_{0}^{l(x, t)} \int_{0}^{M} \tanh \left(\frac{\bar{K}}{\bar{M}} \theta(x, t)\right) d \theta d x \\
& \downarrow \int_{0}^{t} \int_{0}^{l} q_{0}(t) \frac{\partial V_{0}(t)}{\partial t} \sin \left(\frac{\pi x}{l}\right) \mathrm{d} x \mathrm{~d} t+\int_{0}^{t} \sum_{i=1}^{n} F_{i}(t) \frac{\partial V_{0}(t)}{\partial t} \sin \left(\frac{\pi x_{i}}{l}\right) \mathrm{d} t+\int_{0}^{t} \sum_{j=1}^{m} M_{j}(t)\left(\frac{\pi x_{j}}{l}\right) \frac{\partial V_{0}(t)}{\partial t} \cos \left(\frac{\pi x_{j}}{l}\right) \mathrm{d} t= \\
& =\int_{0}^{l} \frac{1}{2} \mu\left[\frac{\partial V_{0}(t)}{\partial t}\right]^{2} \sin ^{2}\left(\frac{\pi x}{l}\right) \mathrm{d} x+\int_{0}^{M^{2}} \frac{\bar{K}}{\bar{K}^{2}} \ln \left\{\cosh \left[\frac{\pi^{2}}{\bar{M}} \frac{\pi^{2}}{l^{2}} V_{0}(t) \sin \left(\frac{\pi x}{l}\right)\right]\right\} \mathrm{d} x
\end{aligned}
$$

Energy Model

$$
V_{0(j+1)}^{2}\left\{\frac{\mu l}{16 k^{2}}\right\}+V_{0(j+1)}\left\{-\frac{\mu l}{8 k^{2}} V_{0(j-1)}-q_{(j)} \frac{l}{\pi}\right\}+\left\{\begin{array}{l}
\frac{\mu l}{16 k^{2}} V_{0(j-1)}^{2}+\sum_{i=1}^{n+1} \frac{\bar{M}^{2}}{\bar{K}} \ln \left(\cosh \left(\left(\frac{\pi}{l}\right)^{2} V_{0(j)} \sin \left(\frac{\pi x_{i}}{l}\right) \frac{\bar{K}}{\bar{M}}\right)\right) h+ \\
-\left(\frac{2 l}{\pi}\right) \cdot \sum_{\mathrm{m}=1}^{j-1} q_{(m)} \cdot \frac{V_{0(m+1)}-V_{0(m-1)}}{2}+q_{(j)} \frac{V_{0(j-1)}}{2}\left(\frac{l}{\pi}\right)
\end{array}\right\}=0
$$

Energy Model

$$
V_{0(j+1)}^{2}\left\{\frac{\mu l}{16 k^{2}}\right\}+V_{0(j+1)}\left\{-\frac{\mu l}{8 k^{2}} V_{0(j-1)}-q_{(j)} \frac{l}{\pi}\right\}+\left\{\begin{array}{l}
\left.\frac{\mu l}{16 k^{2}} V_{0(j-1)}^{2}+\sum_{i=1}^{n-1} \ln \right)^{2} \ln \left(\operatorname { c o s h } \left(\left(\frac{\pi}{l}\right)^{2} V_{0(j)} \sin \left(\frac{\pi x_{i}}{l} \frac{\bar{K}}{\bar{M}}\right)\right.\right. \\
-\left(\frac{2 l}{\pi}\right) \cdot \sum_{\mathrm{m}=1}^{j-1} q_{(m)} \cdot \frac{V_{0(m+1)}-V_{0(m-1)}}{2}+q_{(j)} \frac{V_{0(j-1)}}{2}\left(\frac{l}{\pi}\right)
\end{array}\right\}=0
$$

1. Determine the unique unknown $\mathrm{V}_{0(\mathrm{j}+1)}$ and calculate the sinusoidal distribution of displacements and, consequently, the curvature at midspan.
2. Then, considering previous curvature calculate the rate of curvature $=\partial \theta / \partial t$.
3. Determine the bending moment M corresponding to the curvature at time t.
4. Calculate the neutral axis depth from rotational equilibrium around the tensile reinforcement under the applied bending moment M.
5. Determine the strains of concrete and steel reinforcements by using the linear deformation diagram and the value of curvature.
6. Determine the strain rates of concrete and steel reinforcements.
7. Calculate the updated dynamic properties of materials.
8. Determine the updated values of the mechanical characteristics ($x_{\mathrm{y}}, M_{\mathrm{y}}, x_{\mathrm{u}}, M_{\mathrm{u}}$), by which the values of \bar{K} and \bar{M} are modified.
The loop is closed when the maximum concrete strain (ultimate state), is obtained.

Case Study 1: Results

Case Study 1: Recorded Load

B40_D5

Case Study 1: Recorded Load

Beam B40_D5		Energy	Continuos Beam	Experimental
Max. Strain Concrete ε_{c}		0.0045	0.0044	0.0037
Max. Strain Tensile Reinf.	ε_{s}	0.0061	0.0056	
Max. Strain Compress. Reinf.	$\varepsilon_{\mathrm{ss}}$	0.0020	0.0020	

Case Study 2: Experimental Set Up

K. Fujikake, B. Li, S. Soeun, Impact response of reinforced concrete beam and its analytical evaluation, J. Struct. Eng. ASCE 135 (2009) 938-950.

Case Study 2: Beam Characteristics

Beam label	S1616
Span length	1.4 m
Width of cross-section	0.150 m
Depth of cross-section	0.250 m
Cover	0.04 m
Area of tensile reinforcement	$3.97 \cdot 10^{-4} \mathrm{~m}^{2}$
Area of compressive reinforcement	$3.97 \cdot 10^{-4} \mathrm{~m}^{2}$
Compressive strength of concrete	42 MPa
Yield strength of reinforcing steel	426 MPa

Case Study 2: Recorded Load

Impact force versus time for the S1616 series of beams, with a drop height equal to 1.2 m .

Impact force versus time for the S 1616 series of beams, with a drop height equal to 0.3 m .

Case Study 2: Recorded Load

Comparison between the experimental data and the theoretical results obtained from the two models presented in this work, relative to the beam of the S 1616 series subjected to the drop of a hammer from a height of 1.2 m .

Case Study 2: Recorded Load

Comparison between the experimental data and the theoretical results obtained from the two models presented in this work, relative to the beam of the S 1616 series subjected to the drop of a hammer from a height of 0.3 m .

Question:

- What is the importance of Strain Rate Effects?

Das, Anindya, et al. "Micromechanisms of deformation in dual phase steels at high strain rates." Materials Science and Engineering: A (2016).10.1016/j.msea.2016.10.101

Question:

- What is the importance of Strain Rate Effects?

Khanna, Sanjeev K., and Ha TTT Phan. "High Strain Rate Behavior of Graphene Reinforced Polyurethane Composites." Journal of Engineering Materials and Technology 137.2 (2015): 021005.

Case Study 1: Strain Rate Importance

- - -	energy model with strain rate effects	\ldots	energy model without strain rate effects
- - -	dynamic model with strain rate effects	\quad	

(b)

B200-40/D3

Case Study 2: Strain Rate Importance

Outline

- Main Aim of the Lecture: Simplified models for the flexural behaviour of R.C. beams subjected to explosion (and impulsive) verified with experimental results. In all models, account is taken of the effects of strain-rate.
- Section 1: Dynamic Models
- Section 2: Energy Model
- Section 3: Sensitivity Analysis
- Section 4: Tower Building Case

Sensitivity Analysis

Span Length	$6-12 \mathrm{~m}$
Slenderness h / L	$1 / 9-1 / 15$
Width	$\mathrm{h} / 2.5$
$\rho_{s}=A_{s} / b d$	$0.005-0.01$
$\rho_{A s}=A_{s s} / A_{s}$	$0.25-0.5$
Concrete Strength	$\mathrm{f}_{\mathrm{cd}} 20-40 \mathrm{MPa}$
Steel	B 450 C

Sensitivity Analysis

$\%$ of Failure

-4000 runs and some interesting results:
-50% of failure in case of High Load and slenderness greater than 12
-0% of failure in case of Low Load and slenderness lower than 13

Sensitivity Analysis

High Load - Maximum Deflection Analysis

Goodness of fit:

Function	SSE m $^{\mathbf{2}}$	R-square	Adjusted R-square:	RMSE m
Linear	0.9585	0.2892	0.2884	0.03207
Quadratic	0.9576	0.2898	0.2883	0.03207
Cubic	0.9574	0.2900	0.2877	0.03208
$4^{\text {th }}$ degree	0.9569	0.2903	0.2873	0.03209

Sensitivity Analysis

Fitting goodness:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{i}\right)^{2} \quad \text { Sum of Squares Due to Error. }
$$

$$
R_{\text {Sgunae }}=\frac{S S R}{S S T}
$$

R-Square: ratio between the sum of squares regarding the mean of regression and the sum of squares regarding the mean of the response value.
adjusted $R_{- \text {SQUARE }}=1-\frac{\operatorname{SSE}(h-1)}{\operatorname{SST}(v)}$ Adjusted R-square: it is an optimal indicator of fit validity when it is necessary to compare different models with different numbers of coefficients.
$R M S E=\sqrt{\frac{S S E}{v}} \quad$ Root Mean Squared Error.

Sensitivity Analysis

High Load - Maximum Deflection Analysis

Goodness of fit:

Function	SSE m $^{\mathbf{2}}$	R-square	Adjusted R-square:	RMSE m
Linear	0.9583	0.2893	0.2886	0.03207
quadratic	0.9562	0.2909	0.2893	0.03205
Cubic	0.9550	0.2918	0.2895	0.03204
$4^{\text {th }}$ degree	0.9548	0.2919	0.2889	0.03206

Sensitivity Analysis

Low Load - Maximum Deflection Analysis
-Low Load

Goodness of fit:

Function	SSE m $^{\mathbf{2}}$	R-square	Adjusted R-square:	RMSE m
Linear	2.358	0.1811	0.1807	0.03550
Quadratic	2.285	0.2064	0.2056	0.03496
Cubic	2.284	0.2069	0.2056	0.03496
$4^{\text {th }}$ degree	2.279	0.2085	0.2068	0.03493

Sensitivity Analysis

Low Load - Maximum Velocity Analysis
-Low Load

Goodness of fit:

Function	SSE $\mathbf{m}^{\mathbf{2}} / \mathbf{s e c}^{\mathbf{2}}$	R-square	Adjusted R-square:	RMSE m/sec
Linear	1077	0.2919	0.2915	0.7587
Quadratic	1045	0.3132	0.3124	0.7474
Cubic	1045	0.3132	0.3121	0.7476
$4^{\text {th }}$ degree	1043	0.3143	0.3128	0.7472

Sensitivity Analysis

-High Load

High Load - Maximum Deflection Analysis
Maximum Deflection 5th. degree polynomial interpolation Numerical Simulation

Peak Load (N)

Slenderness

Slenderness

$$
\begin{aligned}
& f(x, y)=p_{0}+p_{10} x+p_{01} y+p_{20} x^{2}+p_{11} x y+p_{02} y^{2}+p_{30} x^{3}+p_{21} x^{2} y+p_{12} x y^{2}+p_{03} y^{3}+p_{40} x^{4}+p_{31} x^{3} y+ \\
& +p_{22} x^{2} y^{2}+p_{13} x y^{3}+p_{04} y^{4}+p_{50} x^{5}+p_{41} x^{4} y+p_{32} x^{3} y^{2}+p_{23} x^{2} y^{3}+p_{14} x y^{4}+p_{05} y^{5}
\end{aligned}
$$

Deflection Goodness of fit:			
SSE m ${ }^{2}$	R-square	AR-square:	RMSE m
0.6011	0.5503	0.5405	0.02567

SSE m ${ }^{2} / \mathrm{sec}^{2}$	R-square	A R-square:	RMSE $\mathrm{m} / \mathrm{sec}$
91.67	0.852	0.8487	0.317

Sensitivity Analysis

-Low Load:

$$
f(x, y)=p_{0}+p_{10} x+p_{01} y
$$

Deflection Goodness of fit:

SSE m 2	R-square	A R-square:	RMSE m
0.7536	0.7383	0.738	0.02007

Velocity Goodness of fit:			
$\mathrm{SSE} \mathrm{m}^{2} / \mathrm{sec}^{2}$	R-square	A R-square:	RMSE m/se
132.1	0.9131	0.913	0.2658

Sensitivity Analysis

-High Load Max. Displacements:

$\mathbf{x}-\mathbf{y}$	Fit type	SSE \mathbf{m}^{2}	R-SQUARE	AR-SQUARE	RMSE \mathbf{m}	Coefficients
Span-Slend.	poly55	0.599829	0.551294	0.541454	0.025646	21
Slend- P.Load	poly55	0.601113	0.550334	0.540473	0.025673	21
Span-Slend.	poly44	0.604141	0.548069	0.541177	0.025654	15
Slend- P.Load	poly44	0.605854	0.546787	0.539876	0.025690	15
Span-Slend.	poly33	0.606089	0.546612	0.542191	0.025625	10
Span-Slend.	poly22	0.606666	0.546180	0.543733	0.025582	6
Slend- P.Load	poly33	0.60937	0.544157	0.539712	0.025694	10
Slend- P.Load	poly22	0.613641	0.540963	0.538487	0.025729	6
Span-Slend.	poly44	0.618171	0.541562	0.534578	0.025936	15
Slend- P.Load	poly11	0.629505	0.529095	0.528083	0.026017	3
Span-Slend.	poly11	0.633605	0.526028	0.525009	0.026102	3
Slend- R.Ratio	poly55	0.664026	0.507555	0.496768	0.026969	21
Span- P.Load	poly55	0.846643	0.372126	0.358372	0.030452	21
Slend.-C.Strength	poly55	0.938409	0.304072	0.288827	0.032060	21

Sensitivity Analysis

-High Load Max. Velocities:

$\mathbf{x}-\mathbf{y}$	Fit type	SSEm $^{\mathbf{2}} \mathbf{s e c}^{\mathbf{2}}$	R-SQUARE	AR-SQUARE	RMSE $\mathbf{~ m} / \mathbf{s e c}$	Coefficients
Slend.-P.Load	poly55	91.67459508	0.851965086	0.848718707	0.317049506	21
Slend.-P.Load	poly44	92.23189316	0.851065169	0.848793832	0.316970774	15
Slend.-P.Load	poly33	92.49950564	0.850633032	0.849176583	0.316569343	10
Slend.-P.Load	poly22	92.92596403	0.849944393	0.849135031	0.316612947	6
Slend.-P.Load	poly11	98.40803253	0.841092021	0.840750284	0.325292313	3
P.Load.-C.Stren.	poly33	357.6543056	0.422464597	0.416833157	0.622487849	10
P.Load - Span.	poly33	362.5423019	0.414571526	0.408863122	0.626727128	10
Slend.-Span	poly55	508.139387	0.179463294	0.161469068	0.746438464	21
Slend.-Span	poly44	510.7910993	0.175181345	0.162602411	0.745933857	15
Slend.-C.Stren.	poly33	511.2570454	0.174428941	0.166378952	0.74424993	10
Slend.-Span	poly33	512.3703241	0.172631233	0.164563716	0.745059803	10
Slend.-Span	poly22	515.5991811	0.167417318	0.162926581	0.745789462	6
Slend.-Span	poly11	529.3251071	0.145252876	0.14341471	0.75443143	3

Sensitivity Analysis

-Low Load Max. Displacements:

$\mathbf{x}-\mathbf{y}$	Fit type	SSE $\mathbf{m}^{\mathbf{2}}$	R-SQUARE	AR-SQUARE	RMSE \mathbf{m}	Coefficients
Slend.-P.Load	poly55	0.58467087	0.796950663	0.794757906	0.017767865	21
Slend.-P.Load	poly44	0.591579941	0.794551224	0.793003171	0.017843657	15
Slend.-P.Load	poly33	0.59624080	0.792932562	0.791932236	0.017889756	10
Slend.-P.Load	poly22	0.601406477	0.791138583	0.790579233	0.017947828	6
Slend.-P.Load	poly11	0.75360261	0.738282651	0.738002739	0.020074761	3
Slend.-Span	poly55	1.249337712	0.566119663	0.561434130	0.02597284	21
Slend.-Span	poly44	1.255508783	0.563976523	0.560691093	0.025994832	15
Slend.-Span	poly33	1.264076134	0.561001182	0.558880415	0.026048348	10
Slend.-Span	poly22	1.265849822	0.560385201	0.559207872	0.026038678	6
Slend.-Span	poly11	1.327557523	0.53895484	0.538461744	0.026644395	3
P.Load-R.Ratio	poly11	2.128770294	0.260703041	0.259912349	0.033739885	3
C.Streng.-P.Load	poly11	2.351506343	0.183349423	0.182476000	0.035461106	3

Sensitivity Analysis

-Low Load Max. Velocities:

$\mathbf{x}-\mathbf{y}$	Fit type	SSE $\mathbf{m}^{2} / \mathbf{s e c}^{2}$	R-SQUARE	AR-SQUARE	RMSE m/sec	Coefficients
Slend.-P.Load	poly55	74.15608153	0.951244314	0.950717795	0.200102675	21
Slend.-P.Load	poly44	74.91211988	0.950747238	0.95037612	0.200795136	15
Slend.-P.Load	poly33	75.21087461	0.950550815	0.95031193	0.200924961	10
Slend.-P.Load	poly22	75.41919317	0.950413851	0.950281055	0.200987377	6
Slend.-P.Load	poly11	132.1395093	0.913121725	0.913028807	0.265824828	3
Slend.-Span	poly55	1026.960884	0.324800050	0.317508474	0.744657315	21
Slend.-Span	poly44	1031.492396	0.321820699	0.316710629	0.745092446	15
Slend.-Span	poly33	1038.129148	0.317457208	0.314159900	0.746481871	10
Slend.-Span	poly22	1038.440420	0.317252555	0.315424094	0.745793567	6
R.Ratio-Slend.	poly11	1054.338630	0.306799897	0.306058507	0.750877786	3
Slend.-Span	poly11	1073.179019	0.294412834	0.293658195	0.757556944	3
C.Stren.-Slend.	poly11	1076.444277	0.292266012	0.291509077	0.758708542	3

Sensitivity Analysis

-Low Load- Best Fit

Low Load - Maximum Deflection Analysis

Goodness of fit:

SSE m 2
0.5847
R-square
0.797
Adjusted R-square:
0.7948
RMSE m
0.01777

$$
\begin{aligned}
& f(x, y)=p_{0}+p_{10} x+p_{01} y+p_{20} x^{2}+p_{11} x y+p_{02} y^{2}+p_{30} x^{3}+p_{21} x^{2} y+p_{12} x y^{2}+p_{03} y^{3}+p_{40} x^{4}+p_{31} x^{3} y+ \\
& +p_{22} x^{2} y^{2}+p_{13} x y^{3}+p_{04} y^{4}+p_{50} x^{5}+p_{41} x^{4} y+p_{32} x^{3} y^{2}+p_{23} x^{2} y^{3}+p_{14} x y^{4}+p_{05} y^{5}
\end{aligned}
$$

Sensitivity Analysis

-Low Load- Best Fit

Low Load - Maximum Deflection Analysis

Goodness of fit:

SSE m 2
0.5847
R-square
0.797
Adjusted R-square:
0.7948
RMSE m
0.01777

$$
\begin{aligned}
& f(x, y)=p_{0}+p_{10} x+p_{01} y+p_{20} x^{2}+p_{11} x y+p_{02} y^{2}+p_{30} x^{3}+p_{21} x^{2} y+p_{12} x y^{2}+p_{03} y^{3}+p_{40} x^{4}+p_{31} x^{3} y+ \\
& +p_{22} x^{2} y^{2}+p_{13} x y^{3}+p_{04} y^{4}+p_{50} x^{5}+p_{41} x^{4} y+p_{32} x^{3} y^{2}+p_{23} x^{2} y^{3}+p_{14} x y^{4}+p_{05} y^{5}
\end{aligned}
$$

Outline

- Main Aim of the Lecture: Simplified models for the flexural behaviour of R.C. beams subjected to explosion (and impulsive) verified with experimental results. In all models, account is taken of the effects of strain-rate.
- Section 1: Dynamic Models
- Section 2: Energy Model
- Section 3: Sensitivity Analysis
- Section 4: Tower Building Case

Stochino F., Attoli A., Concu G., 'Fragility curves for RC structure under blast load considering the influence of seismic demand", Applied Sciences, 10, article number 445, (2020).

A framed RC structure with squared cross section has been considered as a case study.

This kind of structure can serve as watchtower in a military environment.

Beam section Column section

$\triangleleft 0.30 \mathrm{~m} \longrightarrow$

$\mathrm{f}_{\mathrm{ck}}(\mathrm{MPa})$	$\mathrm{e}_{\mathrm{c} 3} \%{ }_{0}$	$\mathrm{e}_{\mathrm{cu}} \%{ }_{0}$	$\mathrm{f}_{\mathrm{yd}}(\mathrm{MPa})$	$\mathrm{e}_{\text {sy }} \% 0$
28	1.75	3.5	450	2.9

Fragility analysis of a RC Structure 2/7

Hemispheric Explosion above ground

Bilinear SDOF model

SDOF equations of motion

$$
\begin{aligned}
& \mathrm{M}_{E, e l} \frac{d^{2} v_{E}(t)}{d t^{2}}+K_{E, e l} u_{E}(t)=P_{E}(t) \quad \text { for } 0 \leq u_{E} \leq u_{E y} \\
& \mathrm{M}_{E, p l} \frac{d^{2} v_{E}(t)}{d t^{2}}+K_{E, p l} u_{E}(t)+\left[K_{E, e l}-K_{E, p l}\right] u_{E y}=P_{E}(t) \quad \text { for } u_{E y}<u_{E} \leq u_{E u}
\end{aligned}
$$

Scaled distance as intensity measure

$$
Z=\frac{R}{W^{\frac{1}{3}}} \text { distance }
$$

Fragility analysis of a RC Structure 3/7

Pushover analysis yields to capacity curve.
Bilinear SDOF model.

Fragility analysis of a RC Structure $4 / 7$

Maximum drift damage thresholds*

$$
X=\frac{u_{M A X}}{h}
$$

Slight Damage	Moderate Damage	Severe Damage
0.0012	0.0080	0.011

Maximum drift for the structure under blast load - 500 kg TNT

Fragility analysis of a RC Structure 5/7

Description	COV	Distribution
Stand-off distance	0.05	Lognormal
Explosive mass	0.15	Lognormal

Slight Damage	Moderate Damage	Severe Damage
0.0012	0.0080	0.011

Fragility analysis of a RC Structure 6/7

Description	COV	Distribution
Stand-off distance	0.05	Lognormal
Explosive mass	0.15	Lognormal

Slight Damage	Moderate Damage	Severe Damage
0.0012	0.0080	0.011

Fragility analysis of a RC Structure 7/7

Description	COV	Distribution
Stand-off distance	0.05	Lognormal
Explosive mass	0.15	Lognormal

Slight Damage	Moderate Damage	Severe Damage
0.0012	0.0080	0.011

Literature References

- Stochino F., Attoli A., Concu G., '"Fragility curves for RC structure under blast load considering the influence of seismic demand", Applied Sciences, 10, article number 445, (2020).
-Carta, G., and F. Stochino. "Theoretical models to predict the flexural failure of reinforced concrete beams under blast loads." Engineering structures 49 (2013): 306-315.
- Stochino, F., and G. Carta. "SDOF models for reinforced concrete beams under impulsive loads accounting for strain rate effects." Nuclear Engineering and Design 276 (2014): 74-86.
-Stochino, Flavio. "RC beams under blast load: Reliability and sensitivity analysis." Engineering Failure Analysis 66 (2016): 544-565.
-Stochino, Flavio. "Flexural models of reinforced concrete beams under blast load." (2013), PhD Thesis.

Conclusions

-The smooth non linear relationship between bending moment and curvature yield a nonlinear equation of motion quite easy to integrate. Continuous beam model is capable of accurate and wide results concerning the displacements and curvature as shown by comparison with experimental data.

- Taking into account Strain Rate effects requires a greater computational effort, but it is of paramount relevance to model the mechanical behaviour of structures under blast load.
- SDOF model is more convenient than the continuous beam model from a computational point of view, but it is less accurate.
- Energy Model produces excellent results for what concerns midspan deflection. It can be improved adding more terms to the series representing the deformed shape.
-The sensitivity analysis have shown that the most significant parameters in the response are the slenderness, and the peak load magnitude. It 's interesting how simple 1st degree polynomial have obtained low Root mean square ($\mathrm{RMSE}=0.02$), confirming the significance of the parameters considered in the analysis.
-Probabilistic Developments.

