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Motivation
Complexity of blast load scenario

Complexity of advanced numerical models

Needs of  simplified models                                                              
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Outline

• Main Aim of the Lecture: Simplified models for the flexural behaviour
of R.C. beams subjected to explosion (and impulsive) verified with
experimental results. In all models, account is taken of the effects of strain-rate.

• Section 1: Dynamic Models
• Section 2: Energy Model
• Section 3: Sensitivity Analysis
• Section 4: Tower Building Case
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Introduction  - Section 1

• Section 1: Dynamics Models

§ Continuos Beam Model

§ SDOF Model

§ FEM
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• Euler-Bernulli beam model

• Plane sections remain plane and
perpendicular to the beam axis
after deformation

• No shear deformation
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Dynamic model 1: continuous beam
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It should be pointed out that the tensile strength of concrete is
neglected.

The uniaxial behavior of reinforcing steel – both in tension and
in compression – is approximated by an elastic – perfectly plastic
diagram, as shown in Fig. 2b [19, Section 5.2.9]. In this figure, Es de-
notes the Young’s modulus of steel, fyk indicates its yield strength
and esy stands for its yield strain.

It is assumed that the yield state of the beam is reached as soon
as the stress in the tensile reinforcement rs equals the yield
strength fyk. The neutral axis depth at the yield state, which is de-
noted by xy, can be obtained by imposing translational equilibrium.
By referring to Fig. 3, where a doubly reinforced concrete beam is
considered, translational equilibrium requires that the following
equation be fulfilled at each instant of time:

b
Z xy

0
rc dyþ rssAss ¼ fykAs: ð5Þ

Here the subscripts ‘‘s’’ and ‘‘ss’’ are appended to quantities cor-
responding to tensile and compressive reinforcements, respec-
tively, while the subscript ‘‘c’’ refers to concrete. The meanings of
all the geometric quantities relative to the beam cross-section
can be inferred from Fig. 3a. By substituting into Eq. (5) the expres-
sion of rc given by Eq. (4) and by using the linear strain diagram
plotted in Fig. 3c, Eq. (5) becomes4
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from which the neutral axis depth at the yield state (xy) can be cal-
culated. The resistant bending moment of the section at the yield
state (My) may be determined from the equilibrium of rotation
around the tensile reinforcement, which leads to the following
formula:
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The ultimate state is reached, instead, when concrete attains its
maximum strain ec,lim. In this case, the stress and strain diagrams
over the cross-section are those depicted in Fig. 4a and b, respec-
tively. The neutral axis depth at the ultimate state (xu) can be cal-
culated again from the translational equilibrium condition, which
– after using Eq. (4) and the linear strain diagram of Fig. 4b – is gi-
ven by one of the following two equations:
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The rotational equilibrium around the tensile reinforcement
provides the expression of the resistant bending moment at the
ultimate state (Mu):

Mu ¼ b f cm

Z xu

0

k ec;lim
ec1

xu% y
xu
% ec;lim

ec1

xu% y
xu

! "2

1þ ðk % 2Þ ec;lim
ec1

xu% y
xu

2

64

3

75ðd % yÞdy

þ Es ec;lim
xu % d0

xu
Assðd % d0Þ if rss < fyk; ð9aÞ

Mu ¼ bfcm

Z xu

0

k ec;lim
ec1

xu% y
xu
% ec;lim

ec1

xu% y
xu

! "2

1þ ðk % 2Þ ec;lim
ec1

xu% y
xu

2

64

3

75ðd % yÞdyþ fyk Assðd % d0Þ

if rss P fyk: ð9bÞ

The determination of xy, My, xu and Mu allows to define the
bilinear bending moment–curvature diagram of the RC beam,
which is drawn in Fig. 5a. In this figure, hy and hu denote the cur-
vatures at the yield and ultimate states, which are given by

hy ¼
esy

d % xy
; ð10Þ

and

hu ¼
ec;lim

xu
; ð11Þ

respectively.

Fig. 2. Stress–strain diagrams for concrete (a) and reinforcing steel (b) adopted in
this work.

4 It is supposed that rss < fyk, as it usually occurs; otherwise, rss should be
substituted by fyk. The same consideration applies to Eq. (7).
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• Material stress-strain relationships
• Model Code. "First complete draft." Bulletin 55 (2010).
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Continuos Beam ModelDynamic model 1: continuous beam
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• Bending moment- curvature law

Bilinear

Dynamic model 1: continuous beam

The parameters K and M appearing in Eqs. (2) and (3) can be de-
rived from the bilinear diagram of Fig. 5a. More specifically K ,
which represents the slope of the diagram plotted in Fig. 5b at
h = 0, can be calculated by this ratio:

K ¼ My

hy
: ð12Þ

The parameter M, which represents the equivalent ultimate
bending moment, can be obtained by equating the areas A1 and
A2 under the curves shown in Fig. 5a and b, respectively. The equiv-
alence of A1 and A2 leads to the following equation:

M2

K
ln cosh

K
M

hu

 !" #

¼ Muðhu $ hyÞ þ Myhu

2
; ð13Þ

where the left hand term has been obtained by integrating Eq. (2).
In this way, the bilinear bending moment–curvature relationship
can be substituted by a smoother diagram, which better approxi-
mates the real behavior of the beam. In fact, the bending
moment–curvature diagram of a real RC beam presents a gradual
change of slope when yielding of the tensile reinforcement occurs,
as in Fig. 5b, and hence there are no tangent discontinuities, as in
Fig. 5a. For this reason, the diagram of Fig. 5b should be preferred
to the diagram of Fig. 5a.

2.3. Strain rate effects for the continuous beam model

The constitutive quantities introduced in Section 2.2 are valid
only in the static regime. Since dynamic loads are considered in
this work and since concrete and steel are strain rate sensitive

materials, the static constitutive quantities are updated by using
the relations provided by the CEB Information Bulletin n. 187 [20]
(refer also to the recent manuscript by Asprone et al. [21]).

First, the strain rates of concrete and steel reinforcements are
easily determined by knowing the rate of curvature and the value
of the neutral axis depth. Next, the dynamic properties of concrete
and steel reinforcements are evaluated.

For what regards concrete [20, Section 3.3.1], its dynamic
strength is given by

fcm;dyn ¼ fcm &
_ec

30 ' 10$ 6

! "1:026&a

if _ec 6 30 s$ 1; ð14aÞ

fcm;dyn ¼ fcm & c & ð _ecÞ1=3 if _ec > 30s$ 1: ð14bÞ

In the formulae above, _ec is the strain rate of concrete, while
a = 1/(5 + 3fcm/4) and c = 10^(6.156a $ 0.492). The concrete strains
ec1 and ec,lim are augmented by the following expressions (see also
[21]):

(a) (b)
Fig. 4. (a) Stress distribution over the cross-section at the ultimate state; (b) strain
diagram at the ultimate state.

(a) (b) (c)
Fig. 3. (a) Sketch of the cross-section of a doubly reinforced concrete beam; (b) stress diagram at the yield state; (c) strain diagram at the yield state.

Fig. 5. (a) Bilinear bending moment–curvature relation; (b) smoother bending
moment–curvature diagram adopted in this work.
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ec1 and ec,lim are augmented by the following expressions (see also
[21]):

(a) (b)
Fig. 4. (a) Stress distribution over the cross-section at the ultimate state; (b) strain
diagram at the ultimate state.

(a) (b) (c)
Fig. 3. (a) Sketch of the cross-section of a doubly reinforced concrete beam; (b) stress diagram at the yield state; (c) strain diagram at the yield state.

Fig. 5. (a) Bilinear bending moment–curvature relation; (b) smoother bending
moment–curvature diagram adopted in this work.
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The parameters K and M appearing in Eqs. (2) and (3) can be de-
rived from the bilinear diagram of Fig. 5a. More specifically K ,
which represents the slope of the diagram plotted in Fig. 5b at
h = 0, can be calculated by this ratio:

K ¼ My

hy
: ð12Þ

The parameter M, which represents the equivalent ultimate
bending moment, can be obtained by equating the areas A1 and
A2 under the curves shown in Fig. 5a and b, respectively. The equiv-
alence of A1 and A2 leads to the following equation:

M2

K
ln cosh

K
M

hu

 !" #

¼ Muðhu $ hyÞ þ Myhu

2
; ð13Þ

where the left hand term has been obtained by integrating Eq. (2).
In this way, the bilinear bending moment–curvature relationship
can be substituted by a smoother diagram, which better approxi-
mates the real behavior of the beam. In fact, the bending
moment–curvature diagram of a real RC beam presents a gradual
change of slope when yielding of the tensile reinforcement occurs,
as in Fig. 5b, and hence there are no tangent discontinuities, as in
Fig. 5a. For this reason, the diagram of Fig. 5b should be preferred
to the diagram of Fig. 5a.

2.3. Strain rate effects for the continuous beam model

The constitutive quantities introduced in Section 2.2 are valid
only in the static regime. Since dynamic loads are considered in
this work and since concrete and steel are strain rate sensitive

materials, the static constitutive quantities are updated by using
the relations provided by the CEB Information Bulletin n. 187 [20]
(refer also to the recent manuscript by Asprone et al. [21]).

First, the strain rates of concrete and steel reinforcements are
easily determined by knowing the rate of curvature and the value
of the neutral axis depth. Next, the dynamic properties of concrete
and steel reinforcements are evaluated.

For what regards concrete [20, Section 3.3.1], its dynamic
strength is given by

fcm;dyn ¼ fcm &
_ec
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if _ec 6 30 s$ 1; ð14aÞ

fcm;dyn ¼ fcm & c & ð _ecÞ1=3 if _ec > 30s$ 1: ð14bÞ

In the formulae above, _ec is the strain rate of concrete, while
a = 1/(5 + 3fcm/4) and c = 10^(6.156a $ 0.492). The concrete strains
ec1 and ec,lim are augmented by the following expressions (see also
[21]):

(a) (b)
Fig. 4. (a) Stress distribution over the cross-section at the ultimate state; (b) strain
diagram at the ultimate state.

(a) (b) (c)
Fig. 3. (a) Sketch of the cross-section of a doubly reinforced concrete beam; (b) stress diagram at the yield state; (c) strain diagram at the yield state.

Fig. 5. (a) Bilinear bending moment–curvature relation; (b) smoother bending
moment–curvature diagram adopted in this work.
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Since the time when the impulsive load is applied is generally
much smaller than the oscillation period of the beam, the failure
of the beam usually occurs before the first peak of oscillation.
We’ll assume monotone constitutive laws.

Dynamic model 1: continuous beam

12

Simplified hypothesis: 1



Dynamic model 1: continuous beam
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Collapse Criterium

Dynamic model 1: continuous beam
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Given Mu, My, xu, xy it is easy to calculate       and      .MK
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Dynamic model 1: continuous beam
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1. the vertical displacement v, which is obtained by solving  the equation of  motion where                                      
and       are varied at each time step due to strain rate effects;

The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be
obtained by means of a numerical approach. An iterative procedure is performed, which
consists in evaluating at each time step the following quantities:
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Dynamic model 1: continuous beam

19



( ) ( )
( )

( ) ( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )
22 2 3 4 2

2
2 2 3 4 2
, , , , ,sech 2 tanh ,K t v x t K t K t v x t v x t v x t v x tK t q x t

M t x M t M t x x x t
µ

é ùæ ö æ öæ ö
ê úç ÷ ç ÷ç ÷
ê úè øè ø è øë û

¶ ¶ ¶ ¶ ¶- + + =
¶ ¶ ¶ ¶ ¶

2nd order Finite 
Difference

Numerical discretization:

Dynamic model 1: continuous beam

( ) ( 1, ) ( 1, ) ( 1, )
2

2

2
2, i j i j i jv v v
h

v x t
x

- - +- +
=

¶
¶
( ) ( 2, ) ( 1, ) ( 1, ) ( 2, )

3

3

3
2 2

2
, i j i j i j i jv v v v

h
v x t
x

- - + +- + - +
=

¶
¶

( ) ( 2, ) ( 1, ) ( , ) ( 1, ) ( 2, )
4

4

4
4 6 4, i j i j i j i j i jv v v v v

h
v x t
x

- - + +- - + - +
=

¶
¶
( ) ( , 1) ( , ) ( , 1)

2

2

2
2, i j i j i jv v v
k

v x t
t

- +- +
=

¶
¶

20



Numerical Integration Scheme:
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Dynamic model 1: continuous beam
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The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be
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The loop is closed when the collapse criterion, which has been defined as the attainment
of the maximum concrete strain (ultimate state), is satisfied.
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The equation of motion is a nonlinear PDE with variable coefficients. Its solution can be
obtained by means of a numerical approach. An iterative procedure is performed, which
consists in evaluating at each time step the following quantities:
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Dynamic model 1: continuous beam
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SDOF Model

• Single Degree of Freedom Model
• Damping is disregarded, since successive cycles of loading are 

not considered. The first peak displacement is the more severe 
condition.
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Taking into account strain rate effect the equation of motion become a nonlinear differential
equation with variable coefficients:
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Biggs, John M., and John Melvin Biggs. Introduction to structural dynamics. 
McGraw-Hill College, 1964.
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FEM

Finite element model by means of by the commercial software Midas Gen. In
particular, the fiber model is used, which consists in dividing the cross-section of
the beam into concrete fibers and steel rebars.

54



Magnusson J, Hallgren M. High performance concrete beams subjected to shock waves
from air blast. Report n. FOA-R--00-01586-311--SE, Defence Research Establishment
(FOA), Tumba, Sweden; 2000.

Case Study 1: Experimental Set Up
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Beam label B40_D5 B200/40_D3

Span length 1.5 m 1.5 m

Width of cross-section 0.300 m 0.293 m

Depth of cross-section 0.160 m 0.160 m

Cover 0.025 m 0.025 m  

Tensile reinforcement 5 ϕ 16 mm 5 ϕ 16 mm

Compressive reinforcement 2 ϕ 10 mm 2 ϕ 10 mm

Concrete compressive strengtha 43 MPa 173/54 MPa b

Maximum concrete strain registered 3.69‰ 5.03‰

Steel yield strength 604 MPa 555 MPa

Steel elastic modulus 210 GPa 204 GPa

Mass per unit length --- c 130 kg/m

a Referring to the compressive strength of  ϕ150x300 mm concrete cylinders.
b The beam was made of  two concrete layers: the first value refers to the concrete in the compressive zone, while the
second is relative to the concrete in the tensile zone.
c This value has not been provided by the authors, so it has been assumed to be equal to120 kg/m.

Case Study 1: Beam Characteristics
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Case Study 1: Recorded Load

Experimental Recorded Load for beam B40_D5 Experimental Recorded Load for beam B200/40_D3
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Case Study 1: Beam After Load

Beam B40_D5

Beam B200/40_D3
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Results – Case Study 1

B40_D5
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B200/40_D3

Results – Case Study 1
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Displacements along longitudinal axis for beam B40_D5 Curvatures along longitudinal axis for beam B40_D5

Results – Case Study 1
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Outline

• Section 1: Dynamic Models

• Section 2: Energy Model
• Section 3: Sensitivity Analysis
• Section 4: Tower Building Case

• Main Aim of the Lecture: Simplified models for the structural behaviour
of R.C. beams subjected to explosion (and impulsive) verified with
experimental results. In all models, account is taken of the effects of strain-rate.
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1. Determine the unique unknown V0(j+1) and calculate the sinusoidal distribution of
displacements and, consequently, the curvature at midspan.

2. Then, considering previous curvature calculate the rate of curvature = ∂𝜃/∂t.
3. Determine the bending moment M corresponding to the curvature at time t.
4. Calculate the neutral axis depth from rotational equilibrium around the tensile

reinforcement under the applied bending moment M.
5. Determine the strains of concrete and steel reinforcements by using the linear

deformation diagram and the value of curvature.
6. Determine the strain rates of concrete and steel reinforcements.
7. Calculate the updated dynamic properties of materials.
8. Determine the updated values of the mechanical characteristics (xy, My, xu, Mu), by

which the values of and are modified.
The loop is closed when the maximum concrete strain (ultimate state), is obtained.

K M

Energy Model
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B40_D5

Case Study 1: Results
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B40_D5

Case Study 1: Recorded Load

69



B40_D
5

Beam B40_D5 Energy Continuos Beam Experimental

Max. Strain Concrete εc 0.0045 0.0044 0.0037

Max. Strain Tensile Reinf.                 εs 0.0061 0.0056

Max. Strain Compress. Reinf.           εss 0.0020 0.0020

Case Study 1: Recorded Load
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Case Study 2: Experimental Set Up
Drop hammer (400 kg)

load cell

RC beamSpecially designed support device
R90 mm

laser displacement sensor

700 mm 700 mm

1400 mm

1700 mm

K. Fujikake, B. Li, S. Soeun, 
Impact response of  reinforced 
concrete beam and its analytical 
evaluation, J. Struct. Eng. ASCE 
135 (2009) 938-950.
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Beam label S1616

Span length 1.4 m

Width of cross-section 0.150 m

Depth of cross-section 0.250 m

Cover 0.04 m

Area of tensile reinforcement 3.97∙10-4 m2

Area of compressive reinforcement 3.97∙10-4 m2

Compressive strength of concrete 42 MPa

Yield strength of reinforcing steel 426 MPa

Case Study 2: Beam Characteristics
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Case Study 2: Recorded Load

Impact force versus time for the S1616 series of  beams, 
with a drop height equal to 1.2 m.

Impact force versus time for the S1616 series of  beams, 
with a drop height equal to 0.3m. 
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Case Study 2: Recorded Load

Comparison between the experimental data and the theoretical results obtained from the two models presented in this 
work, relative to the beam of  the S1616 series subjected to the drop of  a hammer from a height of  1.2 m.

t (ms)

vmax (mm)
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Case Study 2: Recorded Load

Comparison between the experimental data and the theoretical results obtained from the two models presented in this work, 
relative to the beam of  the S1616 series subjected to the drop of  a hammer from a height of  0.3 m.

t (ms)

vmax (mm)
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• What is the importance of Strain Rate Effects?

Question:

Das, Anindya, et al. "Micromechanisms of  deformation in dual phase steels at high 
strain rates." Materials Science and Engineering: A (2016).10.1016/j.msea.2016.10.101 

4. Discussion

The results presented above demonstrate the variations in deforma-
tion behaviour of the two DP steels with strain rate. The major
difference between DP600 and DP800 steels being the martensitic
volume fraction, the observed variations imply the role of martensite in

controlling the deformation behaviour. The size of the individual
phases also impacts the deformation behaviour in these steels,
especially at high strain rates. Their spatial distributions will determine
the manner in which they participate in the deformation process.
Analyses carried out to understand such influences are presented here.

4.1. Deformation behaviour up to the onset of global localization

Based on the TEM observations, it is evident that the lower amount
of martensite in DP600 steel facilitated the formation of dislocation
cells in the ferrite at all strain rates. Upon gross yielding, it can be
logically assumed that the ferrite grains deform substantially, accom-
modating plastic strains, while the martensite remains largely elastic.
This will create a strain incompatibility between the two phases and as
a result, strain localization in the form of dislocation clustering occur at
the ferrite-martensite interface. With increase in strain rate, this
localization is expected to increase rapidly in DP600 steel, resulting
in the spread of the dislocation clusters throughout the ferrite grains,
leading to extensive plastic deformation of the ferrite.

Due to a higher martensite fraction in DP800 steel, the ferrite
grains in this steel experience more profuse dislocation generation
compared to DP600 steel. Depending upon the size of the ferrite grains,
there will be a deformation gradient from the interface to the interior of
the grains. Small grains, as in DP800 steel, therefore tend to deform
more homogeneously compared to the large ones, like that in DP600

Fig. 3. Engineering stress-strain curves obtained from tensile testing at different strain-rates for (a) DP600 and (b) DP800 steels.

Fig. 4. Variation in yield stress, ultimate tensile stress and uniform elongation for
DP600 and DP800 steels at different strain rates.

Fig. 5. Bright field TEM images showing microstructures of (a) DP600 and (b) DP800 steels in the as-received condition. F=ferrite, M=martensite.

A. Das et al. Materials Science & Engineering A xx (xxxx) xxxx–xxxx

4
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• What is the importance of Strain Rate Effects?

Question:

Khanna, Sanjeev K., and Ha TT Phan. "High Strain Rate Behavior of  Graphene
Reinforced Polyurethane Composites." Journal of  Engineering Materials and Technology 
137.2 (2015): 021005.

work-hardening part of a material involves into its molecular
arrangement. Therefore, the GR volume fracture of 0.5 wt.% is
assumed as ideal one, at which GR nanosheets both improve the
mechanical properties of PU matrix and give no big disturbance
on matrix molecular arrangement. On the other hand, peak
stresses of composite with 0.75 wt.% and 1% of GR are lower
than those of 0.5 wt.% GR because when too much GR nanosheets
are added into PU matrix some parts of GR may overlap each
other leading to disordered molecular arrangement and poor
work-hardening. Moreover, if GR nanosheets are continue adding
to the matrix, the phenomenon of GR restacking may happen,
resulting agglomerates of GR sheets in composite. In other words,

GR nanosheets fail to disperse well in the matrix, leading to unre-
liable and inconsistent mechanical properties of GR/PU
composite.

Postheated Specimens

To reiterate, postheated GR/PU composite samples were heated
to 55 !C for about 12 h.

Pristine PU. Relations between stress and strain at four differ-
ent strain rates are plotted in Fig. 11. Similar to unheated speci-
mens; these curves include three main parts: elastic, plateau, and

Fig. 7 Optical micrographs (103) of unheated GR/PU with 0.25% GR tested at strain rates of:
(a) 1630 s21, (b) 2912 s21, (c) 3400 s21, and (d) 3815 s21

Fig. 8 Dynamic compression stress–strain response of
unheated GR/PU with 0.5% GR

Fig. 9 Dynamic compression stress–strain response of
unheated GR/PU with 0.75% GR

Fig. 10 Dynamic compression stress–strain response of
unheated GR/PU with 1% GR

Fig. 11 Dynamic compression stress–strain response of post-
heated pristine PU

021005-6 / Vol. 137, APRIL 2015 Transactions of the ASME

Downloaded From: http://materialstechnology.asmedigitalcollection.asme.org/ on 11/21/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use
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Case Study 1: Strain Rate Importance

energy model with strain rate effects energy model without strain rate effects

dynamic model with strain rate effects dynamic model without strain rate effects

0
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Case Study 2: Strain Rate Importance

energy model with strain rate effects energy model without strain rate effects

dynamic model with strain rate effects dynamic model without strain rate effects
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Outline

• Section 1: Dynamic Models
• Section 2: Energy Model

• Section 3: Sensitivity Analysis
• Section 4: Tower Building Case

• Main Aim of the Lecture: Simplified models for the flexural behaviour
of R.C. beams subjected to explosion (and impulsive) verified with
experimental results. In all models, account is taken of the effects of strain-rate.
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Sensitivity Analysis

High Load

Low Load

P  106N
0.8

0.4

0.1

2.7 5
t msec

PE(t)

ME(t)

uE(t)

KE(t)

Span Length 6 – 12 m

Slenderness h/L 1/9 – 1/15

Width h/2.5

0.005 – 0.01

0.25 – 0.5

Concrete Strength fcd 20 – 40  MPa

Steel B450 C
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detectable in the field data. Indeed, the displacements transducers keep on recording even if the beams is beyond its ultimate
limit state. However, it is important to highlight that the last part of the experimental curve exhibits an abrupt change, which
can be attributed either to a small damage of the experimental apparatus or, more probably, to the crushing of concrete.

The results presented in Fig. 8 prove the accuracy of the SDOF model and allow to consider it as a reliable tool for the sensi-
tivity analysis developed in the next Section.

3. Sensitivity analysis

In order to design blast-resistant structures it is essential to determine the key parameters in this kind of problems. For this
reason, a sensitivity analysis is developed in this paper. Numerical simulations by means of the above presented SDOF model
are developed, considering different load scenarios and beam characteristics. This model was chosen because it is very convenient
from a computational point of view. As it will become clear in the following paragraphs the need for short computational time is
of fundamental importance in this analysis.

After a first reliability assessment necessary to detect a set of beams that has withstood the blast load, a sensitivity analysis is
developed considering only it. The base idea is to look for any correlations between the response of the SDOF and the different
parameters defining the dynamic problem: peak load, slenderness, span length, etc. These correlations are detected looking at
the least squares interpolation function that better fit the numerical data. The response of the SDOF is expressed by the maximum
beam displacement (midspan deflection) and the corresponding velocity which can influence strain rates and, consequently, the
mechanical characteristics of materials.

3.1. Load and geometrical/strength characteristics

The beams considered in the simulations are simply supported, and their geometrical/strength characteristics vary randomly
within the limits reported in Table 2. In this way, it is possible to consider a wider range of solutions referring to the most com-
mon real cases.

A uniform distributed dynamic load is applied to the beams. In order to represent a hemispherical detonation its time history
is a triangle with a peak load varying from 100 to 800 kN and a positive phase duration within the range 2.7–5.0 ms.

Table 2
Geometrical and strength characteristics of beams with their variation range.

Characteristic Value

Span 6 ÷ 12 m
Slenderness L/h 9 ÷ 15
Width h/2.5 m
ρs=As/bd 0.005 ÷ 0.01
ρAs=Ass/As 0.25 ÷ 0.5
Concrete fck = 20 ÷ 40 MPa
Steel fyk = 450 MPa

Fig. 9. Collapse percentage of the beams examined for different slenderness values. The solid black line distinguishes the low load from the high load case.
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Sensitivity Analysis

-4000 runs and some interesting results:

-50% of  failure in case of   High Load and 
slenderness greater than 12

-0% of  failure in case of   Low Load and 
slenderness lower than 13
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Sensitivity Analysis

Goodness of fit:
Function SSE m2 R-square Adjusted R-square: RMSE m

Linear 0.9585 0.2892 0.2884 0.03207
Quadratic 0.9576 0.2898 0.2883 0.03207

Cubic 0.9574 0.2900 0.2877 0.03208
4th degree 0.9569 0.2903 0.2873 0.03209

-High Load
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Fitting goodness:

Sensitivity Analysis

Sum of  Squares Due to Error.

SQUARE
SSRR
SST- =

R-Square: ratio between the sum of  squares regarding the 
mean of  regression and the sum of  squares regarding the 
mean of  the response value.
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11SQUARE

SSE hadjusted R
SST n-

-
= - Adjusted R-square: it is an optimal indicator of  fit validity 

when it is necessary to compare different models with 
different numbers of  coefficients.
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Sensitivity Analysis

Goodness of fit:
Function SSE m2 R-square Adjusted R-square: RMSE m

Linear 0.9583 0.2893 0.2886 0.03207
quadratic 0.9562 0.2909 0.2893 0.03205

Cubic 0.9550 0.2918 0.2895 0.03204
4th degree 0.9548 0.2919 0.2889 0.03206

-High Load
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Sensitivity Analysis

Goodness of fit:
Function SSE m2 R-square Adjusted R-square: RMSE m

Linear 2.358 0.1811 0.1807 0.03550
Quadratic 2.285 0.2064 0.2056 0.03496

Cubic 2.284 0.2069 0.2056 0.03496
4th degree 2.279 0.2085 0.2068 0.03493

-Low Load
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Sensitivity Analysis

Goodness of fit:
Function SSE 

m2/sec2

R-square Adjusted R-square: RMSE m/sec

Linear 1077 0.2919 0.2915 0.7587
Quadratic 1045 0.3132 0.3124 0.7474

Cubic 1045 0.3132 0.3121 0.7476
4th degree 1043 0.3143 0.3128 0.7472

-Low Load
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-High Load

Sensitivity Analysis

2 2 3 2 2 3 4 3
0 10 01 20 11 02 30 21 12 03 40 31

2 2 3 4 5 4 3 2 2 3 4 5
22 13 04 50 41 32 23 14 05

( , )f x y p p x p y p x p xy p y p x p x y p xy p y p x p x y

p x y p xy p y p x p x y p x y p x y p xy p y

= + + + + + + + + + + + +

+ + + + + + + + +

Velocity Goodness of fit:
SSE m2/sec2 R-square A R-square: RMSE 

m/sec
91.67 0.852 0.8487 0.317

Deflection Goodness of fit:
SSE m2 R-square AR-square: RMSE 

m
0.6011 0.5503 0.5405 0.02567
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-Low Load:

Sensitivity Analysis

0 10 01( , )f x y p p x p y= + +

Deflection Goodness of fit:
SSE m2 R-square A R-square: RMSE m
0.7536 0.7383 0.738 0.02007

Velocity Goodness of fit:
SSE m2/sec2 R-square A R-square: RMSE m/sec

132.1 0.9131 0.913 0.2658
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-High Load Max. Displacements:

Sensitivity Analysis

x – y Fit type SSE m2 R-SQUARE AR-SQUARE RMSE m Coefficients

Span –Slend. poly55 0.599829 0.551294 0.541454 0.025646 21
Slend- P.Load poly55 0.601113 0.550334 0.540473 0.025673 21
Span-Slend. poly44 0.604141 0.548069 0.541177 0.025654 15

Slend- P.Load poly44 0.605854 0.546787 0.539876 0.025690 15
Span-Slend. poly33 0.606089 0.546612 0.542191 0.025625 10
Span-Slend. poly22 0.606666 0.546180 0.543733 0.025582 6

Slend- P.Load poly33 0.60937 0.544157 0.539712 0.025694 10
Slend- P.Load poly22 0.613641 0.540963 0.538487 0.025729 6
Span-Slend. poly44 0.618171 0.541562 0.534578 0.025936 15

Slend- P.Load poly11 0.629505 0.529095 0.528083 0.026017 3
Span-Slend. poly11 0.633605 0.526028 0.525009 0.026102 3

Slend- R.Ratio poly55 0.664026 0.507555 0.496768 0.026969 21
Span- P.Load poly55 0.846643 0.372126 0.358372 0.030452 21

Slend.-C.Strength poly55 0.938409 0.304072 0.288827 0.032060 21
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-High Load Max. Velocities:

Sensitivity Analysis

x – y Fit type SSEm2/sec2 R-SQUARE AR-SQUARE RMSE m/sec Coefficients

Slend.-P.Load poly55 91.67459508 0.851965086 0.848718707 0.317049506 21
Slend.-P.Load poly44 92.23189316 0.851065169 0.848793832 0.316970774 15
Slend.-P.Load poly33 92.49950564 0.850633032 0.849176583 0.316569343 10
Slend.-P.Load poly22 92.92596403 0.849944393 0.849135031 0.316612947 6
Slend.-P.Load poly11 98.40803253 0.841092021 0.840750284 0.325292313 3

P.Load.-C.Stren. poly33 357.6543056 0.422464597 0.416833157 0.622487849 10
P.Load – Span. poly33 362.5423019 0.414571526 0.408863122 0.626727128 10

Slend.-Span poly55 508.139387 0.179463294 0.161469068 0.746438464 21
Slend.-Span poly44 510.7910993 0.175181345 0.162602411 0.745933857 15

Slend.-C.Stren. poly33 511.2570454 0.174428941 0.166378952 0.74424993 10
Slend.-Span poly33 512.3703241 0.172631233 0.164563716 0.745059803 10
Slend.-Span poly22 515.5991811 0.167417318 0.162926581 0.745789462 6
Slend.-Span poly11 529.3251071 0.145252876 0.14341471 0.75443143 3
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-Low Load Max. Displacements:

Sensitivity Analysis

x – y Fit type SSE m2 R-SQUARE AR-SQUARE RMSE m Coefficients

Slend.-P.Load poly55 0.58467087 0.796950663 0.794757906 0.017767865 21
Slend.-P.Load poly44 0.591579941 0.794551224 0.793003171 0.017843657 15
Slend.-P.Load poly33 0.59624080 0.792932562 0.791932236 0.017889756 10
Slend.-P.Load poly22 0.601406477 0.791138583 0.790579233 0.017947828 6
Slend.-P.Load poly11 0.75360261 0.738282651 0.738002739 0.020074761 3
Slend.-Span poly55 1.249337712 0.566119663 0.561434130 0.02597284 21
Slend.-Span poly44 1.255508783 0.563976523 0.560691093 0.025994832 15
Slend.-Span poly33 1.264076134 0.561001182 0.558880415 0.026048348 10
Slend.-Span poly22 1.265849822 0.560385201 0.559207872 0.026038678 6
Slend.-Span poly11 1.327557523 0.53895484 0.538461744 0.026644395 3

P.Load-R.Ratio poly11 2.128770294 0.260703041 0.259912349 0.033739885 3
C.Streng.-P.Load poly11 2.351506343 0.183349423 0.182476000 0.035461106 3
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-Low Load Max. Velocities:

Sensitivity Analysis

x – y Fit type SSE m2/sec2 R-SQUARE AR-SQUARE RMSE m/sec Coefficients

Slend.-P.Load poly55 74.15608153 0.951244314 0.950717795 0.200102675 21
Slend.-P.Load poly44 74.91211988 0.950747238 0.95037612 0.200795136 15
Slend.-P.Load poly33 75.21087461 0.950550815 0.95031193 0.200924961 10
Slend.-P.Load poly22 75.41919317 0.950413851 0.950281055 0.200987377 6
Slend.-P.Load poly11 132.1395093 0.913121725 0.913028807 0.265824828 3
Slend.-Span poly55 1026.960884 0.324800050 0.317508474 0.744657315 21
Slend.-Span poly44 1031.492396 0.321820699 0.316710629 0.745092446 15
Slend.-Span poly33 1038.129148 0.317457208 0.314159900 0.746481871 10
Slend.-Span poly22 1038.440420 0.317252555 0.315424094 0.745793567 6

R.Ratio-Slend. poly11 1054.338630 0.306799897 0.306058507 0.750877786 3
Slend.-Span poly11 1073.179019 0.294412834 0.293658195 0.757556944 3

C.Stren.-Slend. poly11 1076.444277 0.292266012 0.291509077 0.758708542 3
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2 2 3 2 2 3 4 3
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( , )f x y p p x p y p x p xy p y p x p x y p xy p y p x p x y

p x y p xy p y p x p x y p x y p x y p xy p y

= + + + + + + + + + + + +

+ + + + + + + + +

Goodness of fit:
SSE m2

0.5847
R-square

0.797
Adjusted R-square:

0.7948
RMSE m
0.01777

-Low Load- Best Fit

Sensitivity Analysis
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-Low Load- Best Fit

Sensitivity Analysis
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Outline

• Section 1: Dynamic Models
• Section 2: Energy Model
• Section 3: Sensitivity Analysis

• Section 4: Tower Building Case

• Main Aim of the Lecture: Simplified models for the flexural behaviour
of R.C. beams subjected to explosion (and impulsive) verified with
experimental results. In all models, account is taken of the effects of strain-rate.
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4.1 Materials and strain rate effects 151 
The materials constitutive laws and characteristics are shown in the following Figure 6 and Table 152 

2. 153 
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Figure 6. Materials constitutive law: (a) concrete, (b) steel.  163 
 164 

Table 2 Materials characteristics. 165 

fck (MPa) ec3 ‰ ecu‰ fyd (MPa) esy ‰ 
28 1.75 3.5 450 2.9 

 166 
The time dependency of the mechanical characteristics of concrete and steel on strain rate is 167 

already known. Indeed, in case of blast or impulsive load the characteristics of materials can be 168 
strongly influenced by strain rate, see [36 - 39]. In the literature it is possible to find quite advanced 169 
analytical models for the strain rate effects [40] but obviously they would increase the computational 170 
cost and the complexity of the model. In order to simplify the problem and reduce the computational 171 
cost in this paper the approach proposed in [25] has been applied. A set of Dynamic Increase Factors 172 
(DIF) equal to the ratio between a dynamic mechanical characteristic fd and the equivalent static one 173 
f has been defined as reported in Table 3. 174 

Thus, given the critical internal force for each structural component, the appropriate DIF has 175 
been chosen from Table 3 in order to modify the mechanical characteristics of the structural model. 176 
 177 

Table 3. Dynamic Increase Factor (DIF) for RC elements, extracted from [25] 178 

Type of stress Reinforcing Bars Concrete 
 fdy/fy fdu/fu fdc/fc 

Bending 1.17 1.05 1.19 
Diagonal Tension 1.00 - 1.00 

Direct Shear 1.10 1.00 1.10 
Bond 1.17 1.05 1.00 

Compression 1.10 - 1.12 
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A framed RC structure with squared
cross section has been considered as a
case study.

This kind of structure can serve as
watchtower in a military environment.

Stochino F., Attoli A., Concu G., ”Fragility curves for RC structure under
blast load considering the influence of seismic demand”, Applied Sciences, 10,
article number 445, (2020).
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Figure 4. Emispherical aboveground blast (left) and structural model (right). 127 
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Figure 5. SDOF constitutive law, Py and uEy respectively are the yielding load and displacement, while 136 
Pu and uEu are the corresponding ultimate ones. KE,el represents the elastic stiffness while KE,pl the plastic 137 
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!"# = 1.772) *
+,
- − 0.114 ) *

+1
- + 0.108 )*

+
-                                                (1) 61 

where z is the scaled distance that measures the distance between the explosive charge and the 62 
building, it is expressed by: 63 

4 = 5

6
7
,
                                                                 (2) 64 

R is the stand-off distance and W is the mass of explosive in kg of equivalent TNT [24 - 25].The 65 
incident impulse is represented by Held’s [24] equation: 66 

8"# = 9	6
1 ,⁄

5
                                                                         (3) 67 

where B is a numerical coefficient that has been considered equal to 4.5·105 for R>10 m and 3.5·105 68 
for R�10 m following the indications reported in [24 - 25]. Instead, the reflected pressure peak can be 69 
expressed as [21]: 70 
 71 
!< = 2 ∙ !"#	 )

>?@ABCD?EF
>?@ABC?EF

-                                                              (4) 72 
 73 
where Patm=0.1 MPa. The positive phase duration td can be expressed assuming a triangular 74 

impulse: 75 
 76 
GH =

I	JEF
?EF

                                                                           (5) 77 
 78 
The blast load time history is usually expressed with an exponential function of time t as proposed 79 

by Friedlander [26] considering K=1.8: 80 
 81 

PM(G) = !M )1 −
P
PQ
-
RSA
AQ                                                       (6) 82 

 83 
In this work, in order to reduce the computational cost, the nonlinear Equation (6) can be simplified 84 
with an equivalent triangular time-history, see Figure 1: 85 

explosive charge

distance
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4.4.Load Scenario 226 

In this paper, only external explosion produced by a terrorist attack has been taken into account. 227 
Stewart et al. [47] described some of the possible scenarios that can generate an external hemispheric 228 
explosion. It is interesting to distinguish theme by the ways in which a mass of explosives could be 229 
transported near the object of the attack: 5 kg body explosive; 25 kg suitcase explosive; 200 kg car 230 
explosive. 231 

In this work the load scenario obtained with 200, 300, 400 and 500 kg of TNT has been considered. 232 
These situations can be easily obtained considering a car or a truck containing the explosives. Various 233 
stand-off distances have been investigated studying the effects of the explosives for the structure 234 
described in Section 3. 235 

4.5.Damage Thresolds 236 
In order to measure the structural performance under blast load the drift values proposed by [48] 237 

have been adopted, see Table 5. It is important to point out that this approach considers the whole 238 
structural response given that the stand-off distance is sufficiently large to obtain a planar blast wave 239 
acting on the building, see Figure 4. Thus, localized column or beam collapse has not been considered. 240 
Instead, the top floor maximum displacement uMAX related to the building height h=12m has been 241 
considered to define the relative drift: 242 

 243 
j = eklm

n                                                                              (9) 244 
 245 

Table 5. Assumed driftop thresolds for performance levels, extracted from [48] 246 
Slight Damage Moderate Damage Severe Damage 
0.0012 0.0080 0.011 

 247 
This simplified approach is clearly limited to its assumptions but can be useful in case of 248 

preliminary or early design because it can easily provide a synthetic parameter describing the damage 249 
condition of a building after the blast load. 250 

 251 

5. Probabilistic Analysis 252 
Fragility curves describe the conditional probability of exceedance (P(X > x0|Z)) of the response 253 

parameter X (drift in this case) given a demand intensity measure (scaled distance Z in this case). Thus, 254 
the structural fragility can be expressed as the cumulative distribution of the probability that a damage 255 
threshold	op is exceeded [21], [49]: 256 

 257 
!(j > op) = ∫ !(j > op|t)	u(t)v4 ≅ ∑ !(j > op|t)y	u(t)y∆ty{

y|p
C{
}{                          (10) 258 

 259 
where the discretization of the integral calculation is represented by a discrete sum of condition 260 

in which the scaled distance is varied with a given step ∆t. 261 
In this paper the structural characteristics have been considered deterministic while the 262 

uncertainties of the load have been modelled considering the explosive mass and stand-off distance 263 
as stochastic variables characterized by Lognormal distributions whose characteristics are shown in 264 
Table 6. 265 

Table 6. Probabilistic Analysis Input Data 266 
Symbol Description COV Distribution 
R Stand-off distance 0.05 Lognormal 
W Explosive mass 0.15 Lognormal 

Maximum drift damage thresholds*

Maximum drift for the structure under blast load - 500 kg TNT
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Conclusions
•The smooth non linear relationship between bending moment and curvature yield a
nonlinear equation of motion quite easy to integrate. Continuous beam model is capable
of accurate and wide results concerning the displacements and curvature as shown by
comparison with experimental data.

•Taking into account Strain Rate effects requires a greater computational effort, but it is
of paramount relevance to model the mechanical behaviour of structures under blast load.

•SDOF model is more convenient than the continuous beam model from a
computational point of view, but it is less accurate.

•Energy Model produces excellent results for what concerns midspan deflection. It can
be improved adding more terms to the series representing the deformed shape.

•The sensitivity analysis have shown that the most significant parameters in the response
are the slenderness, and the peak load magnitude. It 's interesting how simple 1st
degree polynomial have obtained low Root mean square (RMSE = 0.02), confirming the
significance of the parameters considered in the analysis.

•Probabilistic Developments.
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